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Abstract— The aim of this project is to study and implement
path planning algorithms on a mobile robot working in a
dynamic environment like warehouse delivering packages from
one place to another. During its journey if the robot encounters
any obstacle, it replans its trajectory and proceed to the
target. The system was developed entirely in Robot Operating
System(ROS) and Gazebo. A 2D occupancy grid map has also
been built using MIT-CSAIL datset.

Index Terms– Mobile Robot, Path Planning, Robot Operating
System, Gazebo, Dynamic Environment

I. INTRODUCTION

Mobile robots are widely used in many industrial fields.
Research on path planning for mobile robots is one of
the most important aspects in mobile robots research. Path
planning for a mobile robot is to find a collision-free
route, through the robot’s environment with obstacles, from
a specified start location to a desired goal location while
satisfying certain optimization criteria. One promising field
of implementation of optimal path planning is in warehouses
like those of Amazon, DHL and FedEx. Robots bring shelves
of goods out of storage and carry them to employees for
shipment of product. The motivation behind using robots
instead of humans is to achieve lesser delivery time of
goods to desired location, and thus generate larger profits
for companies. These warehouses are not always the same
and keep changing with time. A robot can encounter dynamic
obstacles in its path like an object or some other robot. So,
path planning algorithms with the ability to handle dynamic
obstacles are implemented in such systems.

In this project, we have demonstrated simulation of a
differential drive robot in a warehouse like environment and
also tested path planning algorithms on it, like Dijkstra’s
Algortithm[1], A*[2], Relaxed A*, Lifelong Plannig A*[3]

and D* Lite[4]. To accomplish the task, we have made use
of Robot Operating System(ROS) and Gazebo simulator.
In ROS[5], we have used urdf tool for modeling a robot
and navigation stack for moving that robot in the simulated
environment. Gazebo[6] has been used as a virtual world for
the robot.

A. Terminology

We have indistinguishably used words like ’world’ and
’environment’ to refer to robot’s configuration space. The
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grid cells of the environment have been referred by ’vertex’
and ’node’.

II. SYSTEM DEVELOPMENT

We modeled a simple differential drive robot with two
motor actuated wheels on the sides and two castors in front
and back as shown in Fig.1. We attached a Hokuyo 2D laser
scanner in front of the robot to receive information about
the world during its motion. Wheels are equipped with wheel
encoders to obtain odometry data of the robot. The modeling
of robot has been done in ROS using its URDF[7] tool. We
created a 3D world like a warehouse in Gazebo simulator as
shown in Fig.2.

III. ROS NAVIGATION STACK

ROS Navigation stack[8] is a collection of packages built
with the objective of performing navigation of a mobile robot
in an environment. It takes in information from odometry,
sensor streams, and a goal pose and outputs safe velocity
commands that are sent to a mobile base which then moves
the robot. If properly configured, the navigation stack can
move robot to the desired goal location preventing colli-
sions with obstacles or getting lost. There are three main
requirements-

• The navigation stack can only handle a differential drive
and holonomic wheeled robots.

• A planar laser (or equivalent sensors like Kinect) must
be mounted on the mobile base of the robot to perform
localization in the environment.

• It is designed and hence works best for robots that are
nearly square or circular.

Navigation stack requires a map of the world to move
the robot. One of the techniques used by robots to build a
map within an unknown environment while keeping track
of the positions is Simultaneous localization and mapping[9]

(SLAM). We manually moved our robot in Gazebo modeled
world and obtained corresponding lidar and odometry data.
These data were then used by ROS gmapping package to
build a 2D occupancy grid map[10] (OGM) of the world.
Gmapping implements FastSLAM[11], which is a particle
filtering based algorithm.

The costmap is the data structure that represents places
that are safe for the robot to be in a grid of cells. Usually,
the values in the costmap are binary, representing free space
or places where the robot would be in collision. There are
two types of costmaps- global and local. Both are generated
using the 2D occupancy grid map (OGM).



Fig. 1: Robot modeled using ROS urdf

• The global costmap is used for the global navigation.
The global navigation is used to create paths for a goal
in the map or a far-off distance.

• The local costmap is used for the local navigation. The
local navigation is used to create paths in the nearby
distances and avoid obstacles.

The robot moves through the map using both global and
local navigation. The global navigation plan is computed
before the robot starts moving toward the next destination.
The planner assumes a circular robot and operates on global
costmap to find a minimum cost plan from a start point to
an end point in a grid. By default, the navigation function
is computed using Dijkstra’s algorithm. Instead of using it,
we implemented Relaxed A* and D* Lite path planning
algorithms for our robot.

The local navigation planner monitors incoming sensor
data and chooses appropriate linear and angular velocities
for the robot to traverse the current segment of the global
path. It combines odometry data with both global and local
costmaps to select a path for the robot to follow. It also has
the ability to re-compute the robot’s path during its motion
to avoid collision with obstacles yet still allowing it to reach
its destination. If the local planner is not able to plan a path
for robot to avoid obstacles and proceed to goal, then it asks
the global planner to do so. In that case, the global planner
replans a path from current position to goal location.

Once a plan is computed, the robot is required to move ac-
cordingly in the world. This task is done by ROS move base
package using the navigation stack. The move base node
links together global and local planner to accomplish its
global navigation task. It uses the linear and angular ve-
locities provided by the local planner and then computes
the required motor commands. In cases where the robot is
lost or can’t find a way to its goal location, the move base
node performs recovery behaviors to get back to a previous
location.

Since robot's motion is not 100% perfect, so there is a need
to continuously track robot’s location in the environment
while it is traversing towards its target. This problem of
estimating the pose of the robot relative to a map is known
as localization. Localization is not terribly sensitive to the
exact placement of objects so it can handle small changes
to the locations of objects. ROS uses amcl (adaptive monte

Fig. 2: Robot’s world modeled in Gazebo

carlo localization[12]) package for localization. Amcl is a
probabilistic localization system for a robot moving in 2D
world. It implements the adaptive Monte Carlo localization
approach, which uses a particle filter to track the pose of a
robot against a known map. Currently, ROS amcl package
supports only laser scans and laser maps.

For visualization of robot's motion in the world, we used
Rviz (ROS Visualization Tool). Rviz also allows us to set
the pose of the robot for a localization system like amcl.
It can also display all the visualization information that the
navigation stack provides. We can also send goal locations
to the navigation stack with Rviz.

IV. PLANNING ALGORITHMS

A Path planning task consists of finding a set of con-
secutive actions that safely transforms a robot or a body
from some initial configuration to a final configuration
while avoiding any obstacles. The robot and obstacles are
described in 2D/3D workspace while the trajectory (or path)
is described as a curve in its configuration space.

A common method for robot's path planning is to represent
the configuration space of the robot as a directed graph
G = (S,E) where S is a set consisting of all possible robot
locations and E is a set of edges connecting these locations. A
cost is associated to each edge denoting the cost of transition
between the two vertices on the edge. The cost of traversing
to or from an obstacle location is infinite. Doing so, the path
planning problem simply reduces to a search problem on the
graph G. An optimal path is the one having minimum total
cost (sum of the all the connecting edges' cost) across all
possible paths from start position to goal position.

A number of classical graph search algorithms have been
developed across the years for calculating optimal paths on
a graph. A few of them have been described briefly.

A. Dijkstra’s Algorithm

Dijkstra's algorithm finds the shortest paths between nodes
in a graph. It was conceived by computer scientist Edsger
W. Dijkstra in 1956 and published three years later. The
algorithm maintains a queue of nodes to be expanded in
increasing order of their value. The algorithm works as
follows-

1) Set the value of start node as 0. Put the start node on
the queue. Mark it as the current node.



2) Expand the current node and calculates its neighboring
nodes’ value as the sum of parent node's value and the
transition cost on the connecting edge. If any cell is an
obstacle, then don't calculate its value. So, the value of
a node can be seen as the minimum cost of reaching
there from the start node.

3) Remove the current node from the queue and put all
the neighboring nodes on the queue in increasing order
of their value.

4) Mark the node with the least value on the queue as the
current node and goto step 2.

The algorithm terminates when either the goal node is
reached or the queue has emptied. In the latter case, there
doesn't exist any path from start node to goal node.

B. A*

Peter Hart, Nils Nilsson and Bertram Raphael of Stanford
Research Institute first described the algorithm in 1968. It
is an extension of Edsger Dijkstra’s algorithm. A* achieves
better performance by using heuristics to guide its search.

A* algorithm calculates the value of a node (called g-
value) bit differently from Dijkstra's algorithm. The value of
a node is assigned the sum of the cost from the start node
as done in Dijkstra's algorithm and the heuristic value of
the node. There are different ways in which this heuristic is
computed like Manhattan, Euclidean, Octile and Chebyshev.
A* is more efficient than Dijkstra's algorithm especially in
large open spaces because unlike exploring every neighbor-
ing node, it guides its search only towards those nodes which
have a high probability to lead robot to the goal in less
number of steps.

C. Relaxed A*

RA* is a time linear relaxed version of A*. It is proposed
to solve the path planning problem for large scale grid
maps. The objective of RA* consists of finding optimal or
near optimal solutions with small gaps, but at much smaller
execution times than traditional A*. The core idea consists
of exploiting the grid-map structure to establish an accurate
approximation of the optimal path, without visiting any cell
more than once.

All the above algorithms work well in a static environment,
i.e., with known locations of start node, goal node and
obstacles. However operating in real world is different -
robot has none or some information about the world. So,
during its motion if any new obstacle is found or it can not
continue on the estimated optimal path, then it should be able
to dynamically update its map and compute the optimal path
to the goal location. One possible solution is to recompute
the trajectory in the updated map from scratch but it is
computationally expensive and inefficient.

Path planning algorithms like Lifelong Planning A*, D*[13]

and D* Lite can perform local modifications in the path of
robot to handle dynamic obstacles.

D. Lifelong Panning A*

Lifelong Panning A* (LPA*) is an incremental version of
A*. It repeatedly finds shortest paths from a start vertex to a
goal vertex in a given graph as edges or vertices are added
or deleted or the costs of edges are changed.

The finite set of vertices of the graph is denoted by S.
Succ(s) and Pred(s) denotes the set of successors and
predecessors respectively of vertex s ∈ S. 0 < c(s, s′) <=
∞ denotes the cost of moving from vertex s to vertex s′.
Heurisitics h(s, sgoal) are used by LPA* to approximate the
goal distances of the vertices s. The heuristices need to be
non-negative and consistent,i.e, obey the triangle inequality
h(sgoal, sgoal) = 0 and h(s, sgoal) <= c(s, s′)+h(s′, sgoal)
for all vertices s ∈ S and s′ ∈ Succ(s) with s 6= sgoal.

LPA* maintains two estimates of the start distance of each
cell, namely a g-value(g(s)) and an rhs-value(rhs(s)). The
g-values directly correspond to the g-values of an A* search.
The rhs-values are one-step lookahead values based on the g-
values and thus potentially better informed than the g-values.
The rhs-value of the start cell is zero. The rhs-value of any
other cell is the minimum over all of its neighbors of the
g-value of the neighbor and the cost of moving from the
neighbor to the cell in question. Mathematically, it can be
expressed as:

rhs(s) =

{
0 s = sstart

mins′∈Pred(s)(g(s′) + c(s′, s)) otherwise
(1)

LPA* maintains key values of all the vertices. A key
is a vector with two components: k(s) = [k1(s); k2(s)]
where k1(s) = min(g(s), rhs(s))+h(s, sgoal) and k2(s) =
min(g(s), rhs(s)). The first component of the keys k1(s)
corresponds directly to the f-values used by A* and the h-
values of LPA* correspond to the h-values of A*. The second
component of the key k2(s) corresponds to the g-values
of A*. Keys are compared according to a lexicographic
ordering.

A node s is overconsistent if g(s) > rhs(s), undercon-
sistent if g(s) < rhs(s) and consistent otherwise. LPA*
maintains a priority queue of vertices. The priority queue
always contains the locally inconsistent vertices at that time.
These are the vertices whose g-values needs to updated to
make them locally consistent. The priority of a vertex in the
priority queue is always the same as its key. The vertices are
kept in increasing order of their key. Hence, LPA* always
expands the vertex in the priority queue with the smallest
key.

LPA* sets the initial g-values and rhs values of all nodes to
infinity. It then updates rhs(sstart) as 0. Thus, the start node
is initially the only locally inconsistent state and is inserted
into the otherwise empty priority queue. It thus expands the
locally inconsistent states in non-decreasing order of their
priorities.

When a locally overconsistent node is expanded, then its
g-value is set equal to its rhs value. On the other hand,
when a locally underconsistent node is expanded, then its



g-value is assigned to be infinity. If the expanded vertex was
overconsitent, then the change of its g-value affects its suc-
cessors’ consistency. Similarly, expanding an underconsistent
node affects consistency of its successors and itself. All those
vertices who become inconsistent after expansion of a vertex
are put on the priority queue.

LPA* expands nodes until sgoal is locally consistent and
the key of the first vertex on the priority queue is greater
than or equal to that of sgoal. If g(sgoal) is finite after the
search, then there exists a path from sstart to sgoal. One
can then locate the shortest path from sstart to sgoal by
always moving from the current vertex s, intially sgoal, to
the predecessor s’ that minimizes g(s′)+ c(s, s′) until sstart
is reached.

During robot’s motion, if any obstacle is detected in the
path,i.e, any edge cost has changed, then LPA* updates the
rhs-values and keys of all the vertices potentially affected by
it. All the inconsistent vertices are put on the priority queue
and LPA* determines the new shortest path from start vertex
to goal vertex.

E. D* Lite

D* Lite algorithm is inspired from LPA*. It repeatedly
determines shortest paths between the current vertex of the
robot and the goal vertex as the edge costs of a graph change
while the robot moves towards the goal vertex. It is derived
from LPA* by exchanging the start and goal vertex and
reversing all edges in the pseudo code. Following is the
pseudo code of D* Lite algorithm:

V. MAP GENERATION TOOL

To test our algorithm on various environments quickly,
we created a utility for creating small maps. This ensured
that we could create our own maps without relying on
datasets for testing of path planning algorithms. So, until
the algorithm for generating map from the Lidar sensor
data was developed, we relied on MGT (Map Generation
Tool) for various test case scenarios. MGT was created with
Processing 2.2.1, which is a framework based on java for
creating visuals. The size of the world is taken to be 600x600
sq. cm and size of individual grid is 30x30 sq. cm thus we
get 20 rows and 20 columns of grids- a total of 400 grids.

The GUI is very easy to work with, a mere click on a
grid will create an obstacle on that grid. After creating all
the obstacle one needs, by clicking generate button, one gets
an array of zeros and ones, which corresponds to whether
a particular grid is empty, the size of the one-dimensional
output array is 400, denoting whether a grid is empty or not
(since this is not a probabilistic map). The minimalistic demo
of MGT can be found on the following link:

http://home.iitk.ac.in/ aakashg/ee698g/

VI. BUILDING MAP FROM DATSET

Light Detection and Ranging sensors are most commonly
used in autonomous robot navigation to create a map of an
unknown environment so that the robot will avoid obstacles
during its motion. We used a 180◦ LIDAR sensor to get wide

Fig. 3: D* Lite pseudo code

Fig. 4: Map generation tool in Processing

view of the environment. LIDAR gives an array consisting
of N values where N is given by: N = 180/m (where m =
angular difference between consecutive readings of LIDAR.)
In our case of dataset, m = 0.5◦ and N = 361. This values
correspond to 0◦, 0.5◦, and 1.0◦ and so on till 360◦. Using
above information, we construct an array of [r, θ] consisting
of N values. Now we convert this array of polar coordinates
[r, θ] to an array of Cartesian coordinates [x, y] to get
the corresponding LIDAR values in Cartesian coordinates
for easy grid assignment. X= r*cos (θ) Y= r*sin (θ) All
the sensors have some error in measurement, and so is the
case with LIDAR. We need a co-variance matrix for LIDAR



sensor. The standard co-variance matrix for a 2-D LIDAR
is taken to be 2x2 matrix. Co-variance matrix of 2-d Lidar
sensor is as follow-

Σ r = [
(δr)2 0

0 (δr)2 ∗ (δθ)2

]
Where δr is the error in range measurement and δθ is
the error in angle measurement. For the dataset we used
δr = 5 cm and δθ = 0.2◦. To convert this co-variance
matrix Σ r from polar to Cartesian coordinates, we need
to employ propagation of uncertainty in case of non-linear
combinations. We overcome this problem by taking Linear
approximation to the [x,y] = f(r,θ). This gives

Σx = J*(Σr)*J’
where J is the jacobian matrix defined as

J= ∂f /∂x

After finding the co-variance matrix, we find the
probability of each grid cell to be occupied. We have a
2-D array consisting of [x,y] and co-variance matrix for
sensor. So, given a point, we find the area under the grid
of the bi-variate normal distribution whose mean is the
point of LIDAR data and co-variance is the corresponding
co-variance matrix.

P (mi) = 1
(2pi|Σx|) ∗ exp(−(x− x0)′(Σx)−1(x− x0/2)

where x = [x, y]′ and x0 = [X,Y ]′ Where X = x-
coordinate of centre of grid in which point (x,y) lies and Y
= y-coordinate of centre of grid in which point (x,y) lies.
This represents the probability of obstacle in grid due to the
sensor measurement at that instant. Now we combine this
probability to previous probability of occupancy of same
grid as follows

P (mi) = P (mi)/(1−P (mi))xP (mi−1)/(1−P (mi−1)∗
Pi/(1− Pi)

Where Pi is taken to be 0.5 and P (mi−1) is probability
of occupancy of grid in previous measurement. We repeat
same process for all the observed data points from Lidar
to find Probabilistic map of environment. After finding the
probability values in each grid, we create the map using a
given threshold. If the Probability value of a grid is greater
than the set threshold (0.6 in our case), we assign that grid to
be full, and else it is assigned empty. In a way, we converted
the probabilistic map into a static one.

VII. RESULTS

We used ROS navigation stack to autonomously navi-
gate our robot in the environment created in Gazebo.We
successfully implemented Relaxed A-star and D-star Lite
path planning algorithms in global planner of ROS (Robot
Operating System) navigation stack in real time. To show
the simulation of robot we used Rviz and Gazebo. Robot

Fig. 5: Map build from MIT-CSAIL dataset in Processing software

successfully detected the obstacles introduced in the envi-
ronment and modified its path to reach the destination.

Following map was obtained by implementing mapping
algorithm on the dataset obtained from MIT-CSAIL. In the
map, green points denote the obstacles detected by Lidar
sensor and white area shows the available path to move.

VIII. FUTURE WORKS

At present our robot is able to detect static obstacles
introduced in environment and replan its path but gets
confused when several dynamic obstacles are introduced in
the environment. In next stage we will work to make our
path planning algorithm more robust so that it could handle
several dynamic obstacles at same time.

In mapping in next stage we will work to filter scattered
points which don?t belong to obstacles but present due to
noise in sensor. We will also modify our occupancy grid
map algorithm to account for effect of a point present in one
cell on probability of other cell. This will provide us more
precise estimation of probabilistic map.
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