
Learning Hierarchical Policies in Dynamic
Environments

Vigneshram Krishnamoorthy
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213

vigneshk@andrew.cmu.edu

Sumit Kumar
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213

skumar2@andrew.cmu.edu

Suriya Narayanan Lakshmanan
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213

snlakshm@andrew.cmu.edu

Abstract

We propose a general framework for solving sparse rewards or long horizon
tasks in dynamic environments using a hierarchical approach combined with meta
reinforcement learning. Our framework first learns useful skills and then utilizes
these acquired skills for solving the hierarchical task. Using meta-learning, we
learn a general representation of each skill across the distribution of environments
achieving fast adaptation when fine-tuned with a few gradient updates. A high-level
policy trained on top of these fine-tuned skills provides an efficient exploration
strategy towards solving sparse reward tasks. Through experiments, we demonstrate
the effectiveness of our proposed method on solving locomotion tasks in sparse
reward dynamic environments.

1 Introduction

Reinforcement Learning (RL) has achieved many impressive results in recent years ranging from
achieving superhuman performance at Atari games [23], game of Go [31] and learning advanced
manipulation and locomotion skills [30, 21, 19]. However, the vast majority of the RL research is
confined to simulation environments like OpenAI gym, Mujoco [33], Bullet, etc. where environmental
attributes such as friction, viscosity, etc. and agent physique such as limb configurations are fixed.
This limits the use of learned policies in real-world applications where the environment is dynamic
and the agent needs to adapt to different conditions to accomplish the given task. Also, RL agents need
a large amount of time and experience to learn new tasks from scratch and can be sample-inefficient,
hence requiring the need to be able to formulate ways for generalization and fast adaptation to new
tasks based on the agent’s prior experience. For example, an agent trained with a specific geometry
in a particular environment when deployed in real-life is bound to have mismatches in geometry
and can be exposed to a different environment where fast adaptation is essential. Animals provide
us great intuition for such fast adaptation to new tasks since they learn by trial and error on how to
compensate for changes in their environment or their body as they grow.

Meta-learning addresses this problem by training models on a variety of tasks such that it can solve
new tasks using only a small number of training samples from the current setting. Using standard
RL frameworks, we experimentally validate that a pre-trained agent is unable to generalize when
faced with an unseen task and performs poorly, motivating our meta-learning approach. We learn
a generalized representation of the skill required to solve the task using meta-learning, which can

perform well in environments that are dynamic and is immune to changes in the physical attributes of
the agent. Furthermore, we use these skills to solve tasks with sparse rewards or long horizons where
naive exploration strategies like ε-greedy or uniform Gaussian exploration noise perform poorly.

In this paper, we formulate a novel framework in which the RL agent can tackle variations in
its physique, dynamic environments and is successful in solving a sparse-reward or long-horizon
task. Our formulation brings together the domain of hierarchical reinforcement learning and meta
reinforcement learning. We use hierarchical RL for making the framework sample efficient by
learning a higher-level policy over the set of skills learnt using meta learning. We present results
comparing the performance of a pre-trained RL agent to our meta RL agent in varying environmental
conditions which demonstrates the effectiveness of our proposed approach. Using our approach,
we also illustrate quantitatively and qualitatively, a notable improvement in performance in solving
sparse-reward tasks in dynamic environments compared to a pre-trained agent.

2 Related Works

Solving tasks with sparse rewards or long horizons is still a big challenge in Deep RL community.
Researchers have proposed two main strategies in this domain: The first strategy is to design a
hierarchy over the actions [32, 24, 8]. Sutton et al. [32] proposed the options framework which
involved abstractions over the space of actions. By combining low-level actions into high-level
primitives or sub-policies, the search space can be reduced exponentially. The second strategy is to
guide exploration by using intrinsic rewards [3, 18]. Although, domain knowledge is not required
to compute these intrinsic rewards, these methods often require solving each task from scratch as
the knowledge of solving one task is not directly transferable to others. As a result, while solving a
collection of tasks, the overall sample complexity is high.

By using sub-policies or skills as high-level primitives, the search space can be reduced exponentially
in HRL tasks. Prior works on learning skills have focused in discrete domains [5, 34] as well as
in continuous action spaces [7, 27]. Bacon & Precup [2] proposed the Option-Critic architecture
that can learn interpretable skills however whether these skills can be reused across complex tasks
is still an open question. Heess et al. [15] proposed to learn a range of skills in a pre-training
environment useful for downstream tasks. Their pre-training setup requires a set of goals to be
specified. Similar to their work, Florensa et al. [13] proposed a general framework that first learns
useful skills in a pre-training environment and then leverages the acquired skills for learning faster
in downstream tasks. An agent learns useful skills with the help of a proxy reward signal designing
which requires domain knowledge. Then, a high-level policy is trained on top of these skills providing
a significant improvement of the exploration and tackling sparse rewards. Eysenbach et al. [11]
proposed a soft actor-critic[14] based method to learn diverse skills without any extrinsic reward
from the environment. However, all these methods have not been able to learn good sub-policies in
high-dimensional continuous control environments like Mujoco Ant environment. As a result, they
achieve poor performance on the corresponding hierarchical task [9]. In this work, we have focused
on learning useful skills in a pre-training environment with a custom-designed reward function. These
skills are then be used by a higher-level policy to solve the hierarchical task.

Meta reinforcement learning has emerged as a promising approach to enable an agent to learn and
adapt quickly to a new task drawn from a distribution from only a few examples rather than learning
every task from scratch. A popular approach to meta-learning is to train a meta-learner that learns
to update the learner’s model’s parameters [4, 28]. This approach has been applied to learning
to optimize deep networks [16, 20, 1]. Ravi et al. [25] learned both the weight initialization and
the optimizer for few-shot image recognition. Another line of research trains memory-augmented
networks on many tasks, where the recurrent learner is trained to adapt to new tasks. The applications
of this approach can be seen in few-shot image recognition [26] as well as in learning "fast" RL
agents [35, 10]. Mishra et al. [22] proposed a temporal convolution-based architecture which
reportedly outperformed the previous memory-based approaches on a variety of RL tasks. Cully et.
al [6] demonstrated how trial-and-error learning algorithms could allow robots to creatively discover
compensatory behaviors using prior knowledge so as to adapt to injury. Houthooft et. al [17] proposed
a meta-learning approach which evolves a differentiable loss function which optimizes its policy
to minimize this loss parameterized via temporal convolutions over the agent’s experience which
enables fast task learning. Finn et al. [12] proposed a model-agnostic algorithm called MAML for
training the model’s initial parameters such that the model has maximal performance on a new task

2

after updating its parameters through one or more gradient steps computed with a small amount of
data from that new task. In this work, we have used MAML algorithm to learn good initializations
for sub-policies that are later adapted to the actual task using only a few training examples.

3 Problem Statement

We define a finite-horizon discounted MDP by a tuple M = (S,A, P, r, ρ0, γ,H) where S is the
state space, A is the action space, P : S × A × S → R+ is the transition probability distribution,
r : S × A → R is the reward function, ρ0 : S → R+ represents an initial state distribution,
γ ∈ (0, 1] is the discount factor and H is the horizon. The agents aims to optimize a stochastic
policy πθ : S ×A→ R+ parameterized by θ in order to maximize the expected discounted return,
η(πθ) = Eτ

[∑H
t=0 γ

tr(st, at)
]

where τ = (s0, a0, · · · , sH), s0 ∼ ρ0(s0), at ∼ πθ(at|st) and
st+1 ∼ P (st+1|st, at).

We consider the Locomotion + Maze hierarchical task with ant agent from rllab [10]. A task is
represented as an MDP M where the aim of the agent is to reach the goal state in the given maze
(see Fig. 1). The agent receives a reward of +1 on successfully completing the task and 0 otherwise.
The following 3 entities vary across tasks: (1) the maze configuration: maze layout and obstacle
locations, (2) the friction coefficients between surface and the agent, and (3) the agent’s physical
parameters namely torso and ankle sizes.M represents the collection of the all such MDPsM . Given
this distributionM, our objective is to minimize the total sample complexity required to solve the
tasks. This is a challenging problem because the agent not only has to devise an efficient exploration
strategy but also has to adapt to the dynamicity in the environment in order to solve the task.

(a) Maze 1 (b) Maze 2

Figure 1: Illustration of the sparse reward tasks considered in this work. Maze 2 is the reflection of
Maze 1.

4 Methods

In this section, we describe our hierarchical formulation to solve a collection of structurally related
tasks as explained in the previous section. In Sec. 4.1, we explain our methodology for learning skills
or sub-policies in a pre-training environment. In Sec. 4.2, we describe our architecture of higher-level
policy or master policy over the learned skills or sub-policies to solve the task.

4.1 Learning sub-policies

Given a distribution of tasks M, we aim to learn a set of useful skills that will later be used as
high-level primitives or macro-actions by a master policy. In order to solve the Locomotion + Maze
task, the agent needs to learn to navigate efficiently in different directions without falling over. Since,
any motion in 2D can be decomposed into movements along the four mutually orthogonal directions
:left, right, up and down, we have used only 4 skills corresponding to these movements. These four
skills can be thought of forming a set of basis skills from which complex locomotion skills can be

3

derived. This skill-set may not be sufficiently powerful in certain environments like circular or spiral
mazes where complex maneuvers are required, but for the environments considered in this work they
perform well as demonstrated by our results.

An environment configuration describes the rllab environment, where the friction coefficients
between the ant and the floor, torso size of the ant and the four ankle sizes of the ant are the
parameters. We define a sub-policy task as learning to navigate in one of the four directions: left,
right, up or down whilst minimizing drift in other directions in a given environment configuration. We
aim to learn a general representation for these sub-policies that can quickly adapt to changes in the
environment configuration. In order to achieve this, we formulate the sub-policy learning problem as
a meta-learning problem aimed at learning a good initialization that can be fine-tuned to the specific
task.

We use model agnostic meta-learning (MAML) [12] as our meta-learning framework. Being model-
agnostic, MAML gives us the flexibility in the underlying model representation and policy opti-
mization techniques. Moreover, its simplicity and few hyper-parameters makes it an ideal choice.
Furthermore, Finn et al. [12] have demonstrated that their proposed method can scale to more
complex deep RL problems like the high-dimensional locomotion tasks with the MuJoCo simulator
[33].

For training the sub-policy tasks, we modified the reward structure of the rllab ant environment so as
to give a positive reward proportional to the velocity of the agent in the desired direction and penalize
the robot for drifting in the perpendicular direction. The custom-designed reward structure in our
work is as follows:

r+x = vx − 2|vy|
r−x = −vx − 2|vy|
r+y = vy − 2|vx|
r−y = −vy − 2|vx|

where r+x is the reward function for the sub-policy task of navigating along the positive x-axis and
similarly r−x, r+y and r−y . vx and vy represents the agent’s velocity along the x-axis and the y-axis
respectively. We found that a factor of 2 was crucial to reduce the drifting of agent in other directions.
We represent the skill corresponding to navigation along the +x axis with ψ+x and similarly ψ−x,
ψ+y and ψ−y .

Algorithm 1 Learning sub-policy initialization using MAML
Requires : p(E), α, β
Output : Sub-policy ψ
Initialize ψ randomly
while not done do

Sample batch of environment configurations Ei ∼ p(E)
for all Ei do

Sample K trajectories D = {(x1, a1, ...xH)} using fψ in Ei
Evaluate∇ψLEi(fψ) using D and LEi
ψ

′

i ← ψ − α∇ψL(fψ)
end
Sample K

′
new trajectories from each Ei using corresponding fψ′

i

ψ ← ψ − β
∑
i∇ψL(fψ′

i
)

end

Algorithm 1 describes our proposed skill learning method using MAML. Note that the same algorithm
is executed four times with different reward structures to learn a good initialization for all four sub-
policies or skills. During meta-training, a batch of environment configurations Ei is randomly
sampled from the given distribution and the model is trained using K trajectories from each one of
the sampled environment configurations. During the adaptation step, the updated model parameters

4

ψ
′

i corresponding to each configuration Ei are computed from the configuration-specific loss L(fψ)
by performing a few gradient updates for each Ei.

During the meta-optimization step of updating ψ, we sample K
′

new trajectories for each of these
configurations Ei and compute the loss on the network containing the adapted model parameters
ψ

′

i. Then, we take the gradients of the above loss w.r.t the generalized model parameters ψ. Hence,
the meta-optimization is performed over the model parameters ψ, while the objective is computed
using the adapted model parameters ψ

′

i. α and β are the step-size parameters for the adaptation step
and the meta-optimization step respectively. Since ∇ψL(fψ′

i
) = ∇ψL(fψ−α∇ψL(fψ)), this update

requires the computation of a gradient through a gradient. The expected reward is not differentiable
due to the unknown transition dynamics, hence, we use a policy gradient method namely PPO [29] to
estimate the gradients for both the adaptation step and the meta-optimization step. The fine-tuning of
the generalized model parameters by performing only a few gradient updates on the test environment
configuration is termed as meta-testing. We also train a single NN model using PPO over the same
task distribution which will be hereby referred to as the pre-trained network. Using experiments, we
prove that the MAML model can perform fast adaptation to the new test environment, whereas the
pre-trained model performs comparatively poorly under the same conditions.

4.2 Learning High-level policies

Given a set of K skills learned during the pre-training phase, we now describe how to use them as
high-level primitives for solving a sparse reward task. Note that the skills learnt using MAML serve
as good initialization on the training distribution and need to be updated further to the new task. For
any given task M ∈M, we first fine-tune the skills (ψ+x, ψ−x, ψ+y and ψ−y) to adapt to the current
task using a few gradient steps with a small amount of training data from the current task. This
meta-update is performed using the same reward structure used for learning the respective sub-policy.
This is necessary as the reward signal from the environment is sparse and meta-update step requires
dense reward signals.

The fine-tuned sub-policies are then frozen and a new Manager NN is trained on top of them.
This master network selects on the K fine-tuned sub-policies. The agent then interacts with the
environment using the selected sub-policy for h time-steps after which the master network makes
another selection. Hence, from the perspective of the master policy network, h environment time
steps corresponds to a single transition. The pseudo code of the training procedure of master policy is
shown in Algorithm 2.

Algorithm 2 Learning master policy
Requires :Sub-policies Ψ = {ψ+x, ψ−x, ψ+y, ψ−y}, Task M
Output :Master policy θ
forall ψ ∈ Ψ do

Fine-tune ψ to adapt to the task M
end
Initialize θ
while not done do

while Episode not terminated do
Select sub-policy ψ from the master policy θ
Execute ψ for h time-steps

end
Update θ to maximize the expected return from 1

h timescale viewpoint
end

5 Experiments

We used rllab framework for our carrying out our experiments. Specifically, we focused on Loco-
motion + Maze hierarchical task environment with ant agent. The rllab Ant is an 8-dof agent with
four limbs and a spherical torso. The complex dynamics of the ant make it a difficult reinforcement
learning environment. Florensa et al. [13] have attempted to solve the same task as ours using their

5

proposed Stochastic Neural Network-based hierarchical framework but their trained ant is unstable
while switching skills and topples over. As a result, their proposed framework is unable to solve
the task. To eliminate this toppling problem, we reduced the gear setting of the ant resulting in a
decreased max speed. This modification dramatically increased the stability of the ant by making it
less susceptible to toppling.

The ant agent learns the set of skills by interacting with an empty environment with no mazes. The
learning procedure is described in Section 4.1. During MAML training, the environment configuration
vary only across episodes and is fixed for the entire episode. The range of distribution for the agent
attributes such as torso and ankle sizes are from 75% of the original value to 125% of the original
value (symmetric across the four ankles) during training. The friction coefficient varies from 0.1 to
0.8 along both the x and y axes.

We run a set of experiments to investigate the adaptation capability of the pre-trained and MAML
sub-policies in a new test environment configuration. Using the trained MAML and pre-trained
models, we perform meta-testing as described in Section 4.1 using only 4 gradient updates. The
learning rate during meta-testing was set at 0.01 for the MAML and pre-trained policies.

After learning the skill-set Ψ, the agent learns a task-specific master policy θ by interacting with
the maze environment with the help of its learned skills. In this task, apart from the joints positions
and velocities, the agent also receives LIDAR-like sensor readings of the distance to walls and
goals that are within a certain range. These extra sensor readings constitute the observation space
for the master policy network. Our second set of experiments are concerned towards using these
sub-policies towards solving the sparse-reward tasks and performing a comparative analysis between
MAML-trained and pre-trained sub-policies.

All the networks in our implementation are actor-critic networks with both the actor and the critic
being 3 layer MLP with 64 hidden units in each layer. We found h = 200 works well in our
application, i.e., the master policy selects a sub-policy after every 200 time-steps. The learning rate is
set as 5e-4 and the discount factor .995. We used the Adam optimizer for training the models. The
update frequency for the network was set at 2 episodes while training the sub-policies and 4 episodes
while training the master policy. We used PPO for training both the sub-policies and the master policy
wtih the number of PPO epochs for each update set at 10.

6 Results

Table 1 illustrates the significant difference in performance between the pre-trained agent and the
MAML agent at the sub-policy tasks of navigating in left, right, up or down directions. We present
the results (in the same order as the records in Table 1) for the following test-set configurations: (1)
low friction setting where the friction coefficients and the increased torso size are outside the training
distribution, and the ankle sizes being the default values (2) asymmetric ankle configuration with
the ankle sizes also outside the training distribution, (3) asymmetric friction configuration with an
increased torso size with the ankles taking the default values. Figure 2 shows the training curve across
number of gradient updates during meta-testing for each of the 3 configurations. From Figure 2 we
can infer that the MAML initialization works better in all these configuration than the pre-trained
initialization. More importantly, the MAML policy is able to adapt to the new,unseen configuration in
just 4 updates, whereas the pre-trained fails to show significant improvement after the same number
of gradient updates. During meta-testing, the variance in rewards also decreases for the MAML
policy whereas the pre-trained model always has much high variance in rewards.

Ant Parameters Rewards Pre-trained Rewards MAML
Friction (x,y) Torso size (units) Ankle size (units) Mean Std Mean Std

0.05,0.05 1.5 1,1,1,1 654.45 489.51 1562.55 55.35
0.1,0.1 1 0.5,1,1,0.5 285.43 459.85 1205.53 165.51
0.1,0.4 1.5 1,1,1,1 568.51 462.51 1644.79 151.35

Table 1: Comparison of pre-trained Ant agent with the MAML Ant agent for several configurations
in the rllab Ant environment after meta-testing, averaged across 50 episodes

6

(a) Low friction (b) Asymmetry in ankle sizes (c) Asymmetry in friction and in-
creased torso size

Figure 2: Average rewards comparison of the pre-trained policy against MAML policy during
meta-testing across gradient updates, for different environment configurations

The videos containing our experimental results that can be found here (URL: https://bit.ly/2jvW3mM)
should help the reader infer further about the exact difference in behavior of the agent in the discussed
configurations. For the low friction setting, the pre-trained agent is unable to adapt its actuation to
movement in the desired direction and ends up moving slower and round-about fashion also drifting
slightly. The MAML agent in the same setting is able to quickly adapt its behavior to accommodate
for the lower traction and stabilizes its movement resulting in less drifting. For the asymmetric ankle
setting, the pre-trained agent is seen to be drifting away significantly from its desired direction and
starts showing completely undesired and random behaviors on many runs. The MAML agent shows
significantly better performance on this asymmetric ankle setting. Note that moving left in this setting
for the ant is a much harder task due to the swollen ankles on the left. Due to such asymmetry in the
agent geometry, some MAML sub-policies can perform better than the others in this case. Finally, in
the asymmetric friction setting, the pre-trained agent once again drifts away from its desired direction
and this behavior is worsened by the increased torso size and it is harder for the agent to stabilize
its movement. Similar to all the previous cases, the MAML agent adapts to this task quite well and
performs as expected.

We compared the performance of master policy in solving the Locomotion + Maze hierarchical
task when using pre-trained sub-policies against using MAML trained sub-policies. The results are
shown in Table 2. Note that both the MAML sub-policies and the pre-trained sub-policies have been
fine-tuned to adapt to the task settings. Master policy using MAML-trained sub-policies achieve
better performance compared to when using pre-trained sub-policies. We considered three different
settings where: (1) low friction setting where the friction coefficient is (0.05, 0.05) with torso and
ankles set at their default sizes, (2) asymmetric friction setting where the friction coefficient is (.1, .2)
with torso and ankles set at their default sizes, (3) the difficult setting with the friction coefficients as
in (2), the four ankle sizes at 0.5, 1.5, 1.5 and 0.5 units and the torso size set at 1.5 units.

Fraction of successful episodes Number of steps
MAML Pre-trained MAML Pre-trained

Low friction .81 .65 1412 ±562 1931 ±892
Asymmetric friction .73 .59 2049 ±847 3215 ±1460

Difficult setting .61 .32 2611 ±1567 5201 ±2872
Table 2: Comparison of pre-trained Ant agent and MAML trained Ant agent in Locomotion + Maze
hierarchical task

The performance is evaluated across 3000 episodes each lasting for a total of 10000 time steps.
The number of steps in the table corresponds to the number of time steps consumed in successful
episodes. In all the three settings, master policy using MAML achieves higher success rate than
its pre-trained counterpart. The difference is further increased in the difficult setting. Pre-trained
sub-policies are only able to achieve half of the success rate of the MAML-trained sub-policies.
Furthermore, the average time steps of successful episodes is less for MAML-trained sub-policies
compared to pre-trained sub-policies. This reflects the ability of MAML-trained sub-policies to
adapt to the current task setting resulting in better performance of the master policy. On the other
hand, pre-trained sub-policies are not able to adjust properly to the settings and hence achieve lower
performance.

7

https://drive.google.com/drive/folders/1i9Tp5a9SqrOK4COksICUfSgwsYeEvcCt?usp=sharing

We have also uploaded the videos of the agent trying to solve the hierarchical task in different settings.
The videos demonstrate the ability of meta-learned sub-policies in quickly adapting to the current
task. On the other hand, the pre-trained sub-policies lead to significant drifting of the agent resulting
in longer time steps for solving the task and also lower success rate. One of the key observations is
that the agent often gets stuck at corners because of its physical structure. This is because the set of
skills learned by the agent are simple movements along straight lines. With more enhanced skills
like moving in an arc, the agent will be able to evade such corners and its performance is expected to
improve. This area is left for future work.

7 Conclusions and Future Work

In this work, we proposed a framework for solving sparse rewards or long horizon tasks in dynamic
environments. Our formulation brings together the domains of meta reinforcement learning and
hierarchical reinforcement learning. We proposed a meta-learning approach for fast adaptation
towards new environment configuration entailing variations in both the environment parameters such
as friction and agent physique such as torso and ankle sizes. We have demonstrated the effectiveness of
our approach through: (1) fast adaptation traits of our meta-learning approach in several environment
configurations, (2) significant improvement both in terms of quantitative rewards and qualitative
agent behavior on the sub-policy tasks compared to the poorly performing pre-trained model and (3)
notably higher success rate and lower number of time-steps on the sparse-reward task compared to
the pre-trained model.

As future work, we plan to investigate the effectiveness of our approach on richer dynamic environ-
ments where the environment distribution varies further. We also plan to attest the computationally
expensive gradient through a gradient procedure in our meta-learning approach using a first-order ap-
proximation and analyze the difference in performance for our problem between the two approaches.

Other limitation of our current approach is having a fixed horizon length for each sub-policy. This
limits the applicability of the proposed method in applying to different environments as some domain
knowledge is required to determine the appropriate horizon length. This issue can be alleviated with
the help of a termination policy learned by the Manager similar to the option framework. Finally, the
policies are represented as feed forward neural networks hence the decision of selecting next skill
is based on the sensor observation at the time of switching and not on the entire horizon. Using a
Recurrent Neural Network can eliminate this limitation.

References

[1] Marcin Andrychowicz et al. “Learning to learn by gradient descent by gradient descent”. In:
Advances in Neural Information Processing Systems. 2016, pp. 3981–3989.

[2] Pierre-Luc Bacon, Jean Harb, and Doina Precup. “The Option-Critic Architecture.” In: AAAI.
2017, pp. 1726–1734.

[3] Marc Bellemare et al. “Unifying count-based exploration and intrinsic motivation”. In: Ad-
vances in Neural Information Processing Systems. 2016, pp. 1471–1479.

[4] Samy Bengio et al. “On the optimization of a synaptic learning rule”. In: Preprints Conf.
Optimality in Artificial and Biological Neural Networks. Univ. of Texas. 1992, pp. 6–8.

[5] Nuttapong Chentanez, Andrew G Barto, and Satinder P Singh. “Intrinsically motivated rein-
forcement learning”. In: Advances in neural information processing systems. 2005, pp. 1281–
1288.

[6] Antoine Cully et al. “Robots that can adapt like animals”. In: Nature 521.7553 (2015), p. 503.
[7] Christian Daniel, Gerhard Neumann, and Jan Peters. “Autonomous reinforcement learning with

hierarchical REPS”. In: Neural Networks (IJCNN), The 2013 International Joint Conference
on. IEEE. 2013, pp. 1–8.

[8] Thomas G Dietterich. “Hierarchical reinforcement learning with the MAXQ value function
decomposition”. In: Journal of Artificial Intelligence Research 13 (2000), pp. 227–303.

[9] Yan Duan et al. “Benchmarking deep reinforcement learning for continuous control”. In:
International Conference on Machine Learning. 2016, pp. 1329–1338.

[10] Yan Duan et al. “RL2: Fast Reinforcement Learning via Slow Reinforcement Learning”. In:
arXiv preprint arXiv:1611.02779 (2016).

8

[11] Benjamin Eysenbach et al. “Diversity is All You Need: Learning Skills without a Reward
Function”. In: arXiv preprint arXiv:1802.06070 (2018).

[12] Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-agnostic meta-learning for fast
adaptation of deep networks”. In: arXiv preprint arXiv:1703.03400 (2017).

[13] Carlos Florensa, Yan Duan, and Pieter Abbeel. “Stochastic neural networks for hierarchical
reinforcement learning”. In: arXiv preprint arXiv:1704.03012 (2017).

[14] Tuomas Haarnoja et al. “Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement
Learning with a Stochastic Actor”. In: arXiv preprint arXiv:1801.01290 (2018).

[15] Nicolas Heess et al. “Learning and transfer of modulated locomotor controllers”. In: arXiv
preprint arXiv:1610.05182 (2016).

[16] Sepp Hochreiter, A Steven Younger, and Peter R Conwell. “Learning to learn using gradient
descent”. In: International Conference on Artificial Neural Networks. Springer. 2001, pp. 87–
94.

[17] Rein Houthooft et al. “Evolved Policy Gradients”. In: arXiv preprint arXiv:1802.04821v2
(2018).

[18] Rein Houthooft et al. “Vime: Variational information maximizing exploration”. In: Advances
in Neural Information Processing Systems. 2016, pp. 1109–1117.

[19] Sergey Levine et al. “End-to-end training of deep visuomotor policies”. In: The Journal of
Machine Learning Research 17.1 (2016), pp. 1334–1373.

[20] Ke Li and Jitendra Malik. “Learning to optimize”. In: arXiv preprint arXiv:1606.01885 (2016).
[21] Timothy P Lillicrap et al. “Continuous control with deep reinforcement learning”. In: arXiv

preprint arXiv:1509.02971 (2015).
[22] Nikhil Mishra et al. “Meta-learning with temporal convolutions”. In: arXiv preprint

arXiv:1707.03141 (2017).
[23] Volodymyr Mnih et al. “Human-level control through deep reinforcement learning”. In: Nature

518.7540 (2015), p. 529.
[24] Ronald Parr and Stuart J Russell. “Reinforcement learning with hierarchies of machines”. In:

Advances in neural information processing systems. 1998, pp. 1043–1049.
[25] Sachin Ravi and Hugo Larochelle. “Optimization as a model for few-shot learning”. In: (2016).
[26] Adam Santoro et al. “Meta-learning with memory-augmented neural networks”. In: Interna-

tional conference on machine learning. 2016, pp. 1842–1850.
[27] Stefan Schaal et al. “Learning movement primitives”. In: Robotics research. the eleventh

international symposium. Springer. 2005, pp. 561–572.
[28] Jürgen Schmidhuber. “Learning to control fast-weight memories: An alternative to dynamic

recurrent networks”. In: Neural Computation 4.1 (1992), pp. 131–139.
[29] John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv preprint

arXiv:1707.06347 (2017).
[30] John Schulman et al. “Trust region policy optimization”. In: International Conference on

Machine Learning. 2015, pp. 1889–1897.
[31] David Silver et al. “Mastering the game of Go with deep neural networks and tree search”. In:

nature 529.7587 (2016), pp. 484–489.
[32] Richard S Sutton, Doina Precup, and Satinder Singh. “Between MDPs and semi-MDPs: A

framework for temporal abstraction in reinforcement learning”. In: Artificial intelligence
112.1-2 (1999), pp. 181–211.

[33] Emanuel Todorov, Tom Erez, and Yuval Tassa. “Mujoco: A physics engine for model-based
control”. In: Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference
on. IEEE. 2012, pp. 5026–5033.

[34] Christopher M Vigorito and Andrew G Barto. “Intrinsically motivated hierarchical skill learn-
ing in structured environments”. In: IEEE Transactions on Autonomous Mental Development
2.2 (2010), pp. 132–143.

[35] Jane X Wang et al. “Learning to reinforcement learn”. In: arXiv preprint arXiv:1611.05763
(2016).

9

	Introduction
	Related Works
	Problem Statement
	Methods
	Learning sub-policies
	Learning High-level policies

	Experiments
	Results
	Conclusions and Future Work

